開機緩衝喇叭保護器
發表於 : 週二 11月 02, 2004 2:16 am
開機緩衝喇叭保護器
「開機緩衝啟動器」又稱為「電源軟啟動電路」,
是後級放大器必備的裝置,
尤其是音響迷喜歡將濾波電容加得很大,
在開機的瞬間,
脈衝電流非常的大,
所以更需要開機緩衝啟動器!
其重要性不亞於喇叭保護器。
但是裝喇叭保護器的人很多,
裝開機緩衝啟動器的人卻很少。
本想用便宜的單晶片微控制器規劃一個開機緩衝啟動器,
但是好像不太受歡迎?
很多人對於使用單晶片微控制器頗有意見。
所以我乾脆來展現一下本人在「工業電子」方面的實力,
製作了一個不用變壓器、不用IC的開機緩衝啟動器。
開機緩衝啟動器的動作要求其實很簡單,
就是在開機時先串上一個限流電阻,
限制開機時的脈衝電流不致太高,
等延遲一段時間後,
濾波電容已經充電充得差不多了,
再將限流電阻短路掉。
電路圖如下:
這個電路有幾個重點:
〈一〉電路中採用了觸發二極體DIAC跟SCR做延時觸發電路,
以免繼電器在快要「吸住」又還沒「吸住」的時候,「跳恰恰」!
依照我以往的經驗,後級放大器有緩慢的直流漂移時,
喇叭保護器的繼電器時常會「跳恰恰」!
每「恰」一聲,繼電器的接點就快速彈跳了好幾下,
這樣對於繼電器的接點很不好,
對放大器和喇叭也有損傷。
所以這個開機緩衝啟動器加了DIAC跟SCR做觸發電路,
避免繼電器「跳恰恰」!
〈二〉電路中採用了「單刀雙擲」的開關做電源開關,
以便在關閉電源時,迅速將電路Reset!
一個稱得上「好」的開機緩衝啟動器重點不在打開電源時的時間延遲,
而是在關掉又迅速打開電源時,延時電路是不是每次都能有效啟動!
要做到這一點,如果不使用「單刀雙擲」的開關,
電路就必須監視電源訊號才行。
電路要監視電源訊號如用基本邏輯元件,成本恐怕蠻高的!
要用單晶片微控制器才划算。
這一點大家知道之後,
恐怕很多人買後級機箱都會要求附上「單刀雙擲」的開關做電源開關。
〈三〉電路中的電源開關跟20ohm/20W的電阻串聯後,再跟繼電器接點並聯。
而不是像一般開機緩衝啟動器的電源開關跟繼電器接點串聯。
這樣的好處是只要繼電器接點的電流容許量大就可以了,
電源開關的電流容許量可以差一點沒關係!
而像一般開機緩衝啟動器如果電源開關是25A,
而繼電器接點只有5A,那麼用那麼好的電源開關有什麼意義?
這個電路其實是源自下面這個電路,
電路中直接將110V交流電源用一個二極體做半波整流,
經過限流電阻將電流控制在適當大小,
去驅動一個繼電器。
接著為了讓繼電器延遲一段時間再動作,
所以加了一個電容跟限流電阻形成RC充電電路,
利用RC充電電路的延時效果,
讓繼電器延遲一段時間再動作。
這個電路雖然非常簡單,
但光靠RC充電電路的延時效果,
延時的動作很不確實。
往往在電容充電到繼電器在快要「吸住」又還沒「吸住」的時候,
繼電器的接點會快速彈跳幾下。
為了解決這個問題,
便利用觸發二極體DIAC跟SCR做成延時觸發電路。
觸發二極體DIAC的結構、電路符號、特性曲線圖如下:
從其特性曲線圖可看出,
DIAC截止時,
當加在DIAC兩端的電壓大到一定的程度時,
它會瞬間呈現「負電阻」的方式導通。
一般電阻在電流增加時,兩端的電壓也跟著增加。
而「負電阻」則是電流增加時,兩端的電壓反而減少。
所以DIAC和RC充電電路配合,
可以在電容充電到一定電壓時〈DB3約為30V〉,
瞬間導通,
產生很大的觸發訊號〈很大的觸發電壓和觸發電流〉。
矽控整流器SCR則是一個觸發開關。
矽控整流器SCR的結構、電路符號、特性曲線圖如下:
SCR當它的Ig大到一定程度就會被觸發導通,
觸發導通後就算觸發訊號消失,
它還是會保持導通,
除非SCR的Ik降到低於它的保持電流,
SCR才會恢復截止狀態。
因此RC充電電路和DIAC、SCR便構成了延時觸發電路。
下面是這個開機緩衝啟動器用實驗板試做的照片。
這個電路測試了一陣子,
覺得還是有一些不滿意的地方!
像是RC充電電路的電容用得那麼大,
但延遲時間才幾秒而已。
要增加延遲時間只能加大電容,
RC充電電路的電阻因為又充當繼電器線圈的限流電阻,
電阻值不能更動。
另外,
這個電路直接由110V市電供電,
不需要再外加電源電路。
如果喇叭保護器也由這個開機緩衝啟動器供電,
那麼關機時,
喇叭保護器也會同時關掉,
便不用擔心關機後喇叭保護器接點還沒斷開,
喇叭會受到關機脈衝的侵襲。
因此,
我又規劃了下面這個「開機緩衝喇叭保護器」出來。
這個電路用來限制開機脈衝電流的電阻不再使用水泥電阻,
而改用專們用來降低開機脈衝電流的負溫度係數熱敏電阻電阻(NTC Thermistor)CL60。
電源的供應不再採用電阻直接降壓,
改用電容傳遞能量的方式,
比較有效率。
延時觸發電路的RC充電電路只負責觸發DIAC,
不再兼有供電方面的責任,
因此可以用較小的電容、較大的電阻,
延遲時間也可以設定得比較長。
喇叭保護器的部分採用PC814光隔離器跟CD4049接成的史密特觸發延時電路所構成。
原先擔心PC814光隔離器的LED順向電壓會不會太高,
製作起來實際測試,
這個喇叭保護器只要直流漂移達1.08V便會動作。
並且由於採用了史密特觸發電路,
繼電器並不會「跳恰恰」。
這個喇叭保護器最特別的地方,
在於你根本不需要考慮喇叭保護器的「接地」問題!
由於是採用光隔離器在偵測放大器的輸出直流,
就算是二聲道平衡式BTL放大器,
也只要使用一組喇叭保護器。
不像一般的喇叭保護器的兩個聲道的喇叭負端都接在一起,
如果是二聲道平衡式BTL放大器,
喇叭的負端不能接在一起,
就需要一聲道各自使用一個喇叭保護器,
而且兩個喇叭保護器還要各自隔離獨立供電。
下面是這個開機緩衝喇叭保護器用實驗板試做的照片。
下面是單面板與雙面鋪銅PC板的Layout圖。
「開機緩衝啟動器」又稱為「電源軟啟動電路」,
是後級放大器必備的裝置,
尤其是音響迷喜歡將濾波電容加得很大,
在開機的瞬間,
脈衝電流非常的大,
所以更需要開機緩衝啟動器!
其重要性不亞於喇叭保護器。
但是裝喇叭保護器的人很多,
裝開機緩衝啟動器的人卻很少。
本想用便宜的單晶片微控制器規劃一個開機緩衝啟動器,
但是好像不太受歡迎?
很多人對於使用單晶片微控制器頗有意見。
所以我乾脆來展現一下本人在「工業電子」方面的實力,
製作了一個不用變壓器、不用IC的開機緩衝啟動器。
開機緩衝啟動器的動作要求其實很簡單,
就是在開機時先串上一個限流電阻,
限制開機時的脈衝電流不致太高,
等延遲一段時間後,
濾波電容已經充電充得差不多了,
再將限流電阻短路掉。
電路圖如下:
這個電路有幾個重點:
〈一〉電路中採用了觸發二極體DIAC跟SCR做延時觸發電路,
以免繼電器在快要「吸住」又還沒「吸住」的時候,「跳恰恰」!
依照我以往的經驗,後級放大器有緩慢的直流漂移時,
喇叭保護器的繼電器時常會「跳恰恰」!
每「恰」一聲,繼電器的接點就快速彈跳了好幾下,
這樣對於繼電器的接點很不好,
對放大器和喇叭也有損傷。
所以這個開機緩衝啟動器加了DIAC跟SCR做觸發電路,
避免繼電器「跳恰恰」!
〈二〉電路中採用了「單刀雙擲」的開關做電源開關,
以便在關閉電源時,迅速將電路Reset!
一個稱得上「好」的開機緩衝啟動器重點不在打開電源時的時間延遲,
而是在關掉又迅速打開電源時,延時電路是不是每次都能有效啟動!
要做到這一點,如果不使用「單刀雙擲」的開關,
電路就必須監視電源訊號才行。
電路要監視電源訊號如用基本邏輯元件,成本恐怕蠻高的!
要用單晶片微控制器才划算。
這一點大家知道之後,
恐怕很多人買後級機箱都會要求附上「單刀雙擲」的開關做電源開關。
〈三〉電路中的電源開關跟20ohm/20W的電阻串聯後,再跟繼電器接點並聯。
而不是像一般開機緩衝啟動器的電源開關跟繼電器接點串聯。
這樣的好處是只要繼電器接點的電流容許量大就可以了,
電源開關的電流容許量可以差一點沒關係!
而像一般開機緩衝啟動器如果電源開關是25A,
而繼電器接點只有5A,那麼用那麼好的電源開關有什麼意義?
這個電路其實是源自下面這個電路,
電路中直接將110V交流電源用一個二極體做半波整流,
經過限流電阻將電流控制在適當大小,
去驅動一個繼電器。
接著為了讓繼電器延遲一段時間再動作,
所以加了一個電容跟限流電阻形成RC充電電路,
利用RC充電電路的延時效果,
讓繼電器延遲一段時間再動作。
這個電路雖然非常簡單,
但光靠RC充電電路的延時效果,
延時的動作很不確實。
往往在電容充電到繼電器在快要「吸住」又還沒「吸住」的時候,
繼電器的接點會快速彈跳幾下。
為了解決這個問題,
便利用觸發二極體DIAC跟SCR做成延時觸發電路。
觸發二極體DIAC的結構、電路符號、特性曲線圖如下:
從其特性曲線圖可看出,
DIAC截止時,
當加在DIAC兩端的電壓大到一定的程度時,
它會瞬間呈現「負電阻」的方式導通。
一般電阻在電流增加時,兩端的電壓也跟著增加。
而「負電阻」則是電流增加時,兩端的電壓反而減少。
所以DIAC和RC充電電路配合,
可以在電容充電到一定電壓時〈DB3約為30V〉,
瞬間導通,
產生很大的觸發訊號〈很大的觸發電壓和觸發電流〉。
矽控整流器SCR則是一個觸發開關。
矽控整流器SCR的結構、電路符號、特性曲線圖如下:
SCR當它的Ig大到一定程度就會被觸發導通,
觸發導通後就算觸發訊號消失,
它還是會保持導通,
除非SCR的Ik降到低於它的保持電流,
SCR才會恢復截止狀態。
因此RC充電電路和DIAC、SCR便構成了延時觸發電路。
下面是這個開機緩衝啟動器用實驗板試做的照片。
這個電路測試了一陣子,
覺得還是有一些不滿意的地方!
像是RC充電電路的電容用得那麼大,
但延遲時間才幾秒而已。
要增加延遲時間只能加大電容,
RC充電電路的電阻因為又充當繼電器線圈的限流電阻,
電阻值不能更動。
另外,
這個電路直接由110V市電供電,
不需要再外加電源電路。
如果喇叭保護器也由這個開機緩衝啟動器供電,
那麼關機時,
喇叭保護器也會同時關掉,
便不用擔心關機後喇叭保護器接點還沒斷開,
喇叭會受到關機脈衝的侵襲。
因此,
我又規劃了下面這個「開機緩衝喇叭保護器」出來。
這個電路用來限制開機脈衝電流的電阻不再使用水泥電阻,
而改用專們用來降低開機脈衝電流的負溫度係數熱敏電阻電阻(NTC Thermistor)CL60。
電源的供應不再採用電阻直接降壓,
改用電容傳遞能量的方式,
比較有效率。
延時觸發電路的RC充電電路只負責觸發DIAC,
不再兼有供電方面的責任,
因此可以用較小的電容、較大的電阻,
延遲時間也可以設定得比較長。
喇叭保護器的部分採用PC814光隔離器跟CD4049接成的史密特觸發延時電路所構成。
原先擔心PC814光隔離器的LED順向電壓會不會太高,
製作起來實際測試,
這個喇叭保護器只要直流漂移達1.08V便會動作。
並且由於採用了史密特觸發電路,
繼電器並不會「跳恰恰」。
這個喇叭保護器最特別的地方,
在於你根本不需要考慮喇叭保護器的「接地」問題!
由於是採用光隔離器在偵測放大器的輸出直流,
就算是二聲道平衡式BTL放大器,
也只要使用一組喇叭保護器。
不像一般的喇叭保護器的兩個聲道的喇叭負端都接在一起,
如果是二聲道平衡式BTL放大器,
喇叭的負端不能接在一起,
就需要一聲道各自使用一個喇叭保護器,
而且兩個喇叭保護器還要各自隔離獨立供電。
下面是這個開機緩衝喇叭保護器用實驗板試做的照片。
下面是單面板與雙面鋪銅PC板的Layout圖。